Archive for November 2017

Multi-Class classification with Logistic Regression

Hi,

Until now our algorithm was able to perform binary classification, in other words it could only classify one thing among several other stuffs.  I was wondering whether it would be nice to improve our algorithm to be a multi-class classifier and classify images with it.

Continue reading Multi-Class classification with Logistic Regression

Logistic Regression – Hands on

Hello!

Today we’ll get hands dirty and test logistic regression algorithm. For this post, we are going to use the very known iris flower data set.This dataset has three classes of flowers which can be classified accordingly to its sepal width/length and petal width/length. From the dataset source “One class is linearly separable from the other 2 […]” which makes this dataset handy for our purposes of binary classification.

Continue reading Logistic Regression – Hands on

Logistic Regression

Hi folks,
Yeah, things are getting more interesting, huh? In the last posts we covered linear regression where we fit a straight line to represent the best way possible a set of points. This is a simple and powerful way to predict values. But sometimes instead of predicting a value, we want to classify them.

Why we would do that? I know that is easy to understand but for those who didn’t catch it, why this is interesting?

Continue reading Logistic Regression

Linear Regression with Normal Equation

Hello,

In this post we’ll show another way different to solve the problem of error minimization in linear regression. Instead of using gradient descent, we could solve this linear system using matrices.

Continue reading Linear Regression with Normal Equation